Cascaded Scene Flow Prediction using Semantic Segmentation
نویسندگان
چکیده
Given two consecutive frames from a pair of stereo cameras, 3D scene flow methods simultaneously estimate the 3D geometry and motion of the observed scene. Many existing approaches use superpixels for regularization, but may predict inconsistent shapes and motions inside rigidly moving objects. We instead assume that scenes consist of foreground objects rigidly moving in front of a static background, and use semantic cues to produce pixel-accurate scene flow estimates. Our cascaded classification framework accurately models 3D scenes by iteratively refining semantic segmentation masks, stereo correspondences, 3D rigid motion estimates, and optical flow fields. We evaluate our method on the challenging KITTI autonomous driving benchmark, and show that accounting for the motion of segmented vehicles leads to state-of-the-art performance.
منابع مشابه
Improving Semantic Video Segmentation by Dynamic Scene Integration
Multi-class image segmentation and pixel-level labeling of the frames that make up a video could be made more efficient by incorporating temporal information. Recently, Convolutional Neural Networks (ConvNets) have made an impressive positive impact on the single image segmentation problem. In this paper, in order to further increase labeling accuracy, we propose a method for integrating short-...
متن کاملZhile Ren | Research Statement
Figure 1: COG descriptor encodes orientation-invariant gradient feature for objects with different views. I develop new representations and algorithms for three-dimensional (3D) scene understanding from cluttered indoor RGB-D images and outdoor video sequences. I introduce novel representations for 3D object detection systems that localize objects with cuboids and describe room layouts by Manha...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملJoint Semantic and Motion Segmentation for Dynamic Scenes using Deep Convolutional Networks
Dynamic scene understanding is a challenging problem and motion segmentation plays a crucial role in solving it. Incorporating semantics and motion enhances the overall perception of the dynamic scene. For applications of outdoor robotic navigation, joint learning methods have not been extensively used for extracting spatiotemporal features or adding different priors into the formulation. The t...
متن کاملImage Segmentation and Scene Understanding Project
1. Introduction Scene or image understanding deals with the problem of making a computer " understand " the world behind the image. This can be done in a number of different ways. In this project, we will deal with a kind of problem of scene understanding, semantic image segmentation or pixel labeling. Multi-class image segmentation or pixel labeling does more than the task of object recognitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.08313 شماره
صفحات -
تاریخ انتشار 2017